Processing math: 100%

SymPy Gamma logo SymPy Gamma

integrate ((2*x+3)**7)
(2x+3)7dx
x*(16*x**7 + 192*x**6 + 1008*x**5 + 3024*x**4 + 5670*x**3 + 6804*x**2 + 5103*x + 2187)
x(16x7+192x6+1008x5+3024x4+5670x3+6804x2+5103x+2187)
plot(16*x**8 + 192*x**7 + 1008*x**6 + 3024*x**5 + 5670*x**4 + 6804*x**3 + 5103*x**2 + 2187*x)
solve(16*x**8 + 192*x**7 + 1008*x**6 + 3024*x**5 + 5670*x**4 + 6804*x**3 + 5103*x**2 + 2187*x, x)
x=
diff(16*x**8 + 192*x**7 + 1008*x**6 + 3024*x**5 + 5670*x**4 + 6804*x**3 + 5103*x**2 + 2187*x, x)
ddx(16x8+192x7+1008x6+3024x5+5670x4+6804x3+5103x2+2187x)=
series(16*x**8 + 192*x**7 + 1008*x**6 + 3024*x**5 + 5670*x**4 + 6804*x**3 + 5103*x**2 + 2187*x, x, 0, 10)
See what Wolfram|Alpha has to say.

Need more control? Try SymPy Live.